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The rich literature concerning the description of DTA curves [1 - 10] is generally 
consistent with the fact that 

~ ,  = k - S (1)  

where AH = heat exchanged during the reaction observed, S = area of the DTA 
peak, and k = constant. This consistency of the results of the theoretical considera- 
tions must give rise to certain doubts, such as: 

(1) The similar forms of Eq. (1) are obtained indepently of the structure of the 
apparatus, the type of the holder used and the method of temperature measure- 
ment, although it is obvious that the structure of the crucible [11], the so-called 
DDK,  will affect the result, as will the ring thermocouple, and the result will also 
be different depending on whether a metal block is used, etc. 

(2) There is no clear viewpoint as to the form of the function dependence k. 
It is not clear if k is a function merely of the apparatus properties or also of the 
sample properties, e.g. its specific heat or thermal conductivity. A list of some of 
the factors, e.g. the kind of gas used, the system geometry, which usually ends 
with "etc.", is clear evidence for this. 

(3) It is not clear what should be considered as the reference areas S. The pre- 
vious doubts [1, 10, 1 2 -  17] did not lead to an explicit explanation [18, 19]. 

Among the numerous models of DTA curve description, Vold's theory [3] can 
be found rather frequently in manuals discussing the method of  thermal differential 
analysis [20-23] .  According to this theory the equation of the peak area (1) is 
obtained by integrating the equation 

d(AT) AH dx 
d ~ -  + A [ A T -  (AT)x ] = T dt (2) 

where AT = the difference between the temperatures of the standard and tested 
substances, AH = amount of heat exchanged with the environment during the 
reaction, dx/dt = reaction rate, c = specific heat, t = time, and (AT)x = con- 
stant. 
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The form dx/dt has been limited in no way. To check this conception it has been 
assumed that 

dx/dt = a = constant (3) 

Taking into account this additional assumption the solution of Eq. (I) has the 
f o r m  

AT= [A(AT). + 
a 

where K = integration constant. Thus 

d(AT) 

dt 

i.e. 

a 
r K 

A exp (-At) (4) 

- -  - K exp (-AT) (5) 

d(AT) 
# 0 (6) 

dt 

for each t value. Because function (4) is continuous and integrable, it cannot 
describe the DTA peak curve as in Fig. 1 [24]. The equation presented above 
shows the existence of error in the theory discussed. 

The process recorded by the DTA peak is the sum of both the reaction itself, 
which is connected with the heat emmission and absorption, and the process of 
temperature compensation between the sample and the environment. Excessive 
simplification of the description of this phenomenon must lead to an inconsistency. 
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In  the light of the previously performed elaborat ions of the problems of heat 

exchange [25], simple and  elegant solutions should no t  be expected even in  com- 

paratively uncompl ica ted  cases. Perhaps the only acceptable answer is a numerical  
solut ion of specific heat-exchange test problems, [26] which can ensure a full use of 
the in format ion  contained in  the D T A  curve. 
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